4 research outputs found

    Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging

    Get PDF
    Minced meat substitution is one of the most common frauds which not only affects consumer health but impacts their lifestyles and religious customs as well. A number of methods have been proposed to overcome these frauds; however, these mostly rely on laboratory measures and are often subject to human error. Therefore, this study proposes novel hyperspectral imaging (400–1000 nm) based non-destructive isos-bestic myoglobin (Mb) spectral features for minced meat classification. A total of 60 minced meat spectral cubes were pre-processed using true-color image formulation to extract regions of interest, which were further normalized using the Savitzky–Golay filtering technique. The proposed pipeline outperformed several state-of-the-art methods by achieving an average accuracy of 88.88%

    Classification of Apple Disease Based on Non-Linear Deep Features

    No full text
    Diseases in apple orchards (rot, scab, and blotch) worldwide cause a substantial loss in the agricultural industry. Traditional hand picking methods are subjective to human efforts. Conventional machine learning methods for apple disease classification depend on hand-crafted features that are not robust and are complex. Advanced artificial methods such as Convolutional Neural Networks (CNN’s) have become a promising way for achieving higher accuracy although they need a high volume of samples. This work investigates different Deep CNN (DCNN) applications to apple disease classification using deep generative images to obtain higher accuracy. In order to achieve this, our work progressively modifies a baseline model by using an end-to-end trained DCNN model that has fewer parameters, better recognition accuracy than existing models (i.e., ResNet, SqeezeNet, and MiniVGGNet). We have performed a comparative study with state-of-the-art CNN as well as conventional methods proposed in the literature, and comparative results confirm the superiority of our proposed model

    Hyperspectral Imaging for Minced Meat Classification Using Nonlinear Deep Features

    No full text
    Minced meat substitution is one of the most common forms of food fraud in the meat industry. Recently, Hyperspectral Imaging (HSI) has been used for the classification and identification of minced meat types. However, conventional methods are based only on spectral information and ignore the spatial variability of the data. Moreover, these methods first tend to reduce the size of the data, which to some extent ignores the abstract level information and does not preserve the spatial information. Therefore, this work proposes a novel Isos-bestic wavelength reduction method for the different minced meat types, by retaining only Myoglobin pigments (Mb) in the meat spectra. A total of 60 HSI cubes are acquired using Fx 10 Hyperspectral sensor. For each HSI cube, a set of preprocessing schemes is applied to extract the Region of Interest (ROI) and spectral preprocessing, i.e., Golay filtering. Later, these preprocessed HSI cubes are fed into a 3D-Convolutional Neural Network (3D-CNN) model for nonlinear feature extraction and classification. The proposed pipeline outperformed several state-of-the-art methods, with an overall accuracy of 94.0%
    corecore